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We investigated the stability of aluminum at the high positive
potentials encountered during the charging of lithium-ion cells. The
electrolyte in these cells consists of solutions of lithium
hexafluorophosphate and lithium methide in binary- and
ternary-solvent mixtures of ethylene carbonate, dimethyl carbonate,
and ethyl methyl carbonate. We performed the investigations with
the controlled potential coulometry technique. We found that a
protective surface film was formed on aluminum electrodes in these
solutions and that this film protected the electrodes from further
corrosion. The protective surface film was found to break down in
lithium methide solutions at ~4.25 V versus a lithium reference
electrode, and this resulted in increased corrosion of the aluminum
electrodes at higher potentials. In contrast to lithium methide
solutions, the protective surface film formed on aluminum electrodes
in lithium hexafluorophosphate solutions was found to be quite
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stable and did not break down at potentials up to ~5 V.
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1. Introduction
The electrolytes used in commercial lithium-ion batteries freeze at ap-
proximately –30 oC and thus their use is limited at lower temperatures.
Recently, ethyl methyl carbonate (EMC) was identified [1] as a useful co-
solvent for lithium-ion battery electrolytes. Since EMC freezes at –55 oC, it
can be used as a co-solvent to extend the liquidus range of the lithium-ion
battery electrolytes. We investigated a number of electrolyte solutions in
binary and ternary mixtures of ethylene carbonate (EC), dimethyl carbon-
ate (DMC), and EMC and recently proposed [2] a 1.0-molar solution of
lithium hexafluorophosphate (LiPF6) in EC-DMC-EMC (1:1:1 vol %) as
the electrolyte for low-temperature applications of lithium-ion cells. We
found the new electrolyte to have good conductivity and electrochemical
stability. We also found that Li/LiCoO2 and graphite/LiCoO2 cells using
the new electrolyte are operable at temperatures down to –40 oC.

The corrosion of aluminum-alloy current collectors for the positive elec-
trodes in lithium-ion batteries has created considerable concern. In a
recent paper [3], we reported our results on the stability of aluminum in
lithium imide (lithium tris-(trifluoromethane-sulfonyl) imide,
LiN(CF3SO2)2) solutions. Aluminum was found to be unstable in these
solutions at potentials above ~3.5 V versus a lithium reference electrode.
The instability of aluminum in these solutions at high positive potentials
was attributed to the breakdown of the protective surface film on alumi-
num. We also found that the surface film could be modified by using
lithium tetrafluoroborate additive to prevent the corrosion of aluminum
in lithium imide solutions at the high positive potentials encountered
during the charging of lithium-ion cells.

This report summarizes our investigation of the stability of aluminum in
several low-temperature electrolytes based on solutions of LiPF6 or
lithium methide (lithium tris-(trifluoromethane-sulfonyl) methide,
LiC(CF3SO2)3) in binary and ternary solvent mixtures of EC, DMC, and
EMC.
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2. Experimental Procedures
We used LiPF6 (Hashimoto, Japan) and lithium methide (Covalent Associ-
ates) as received. Ethylene carbonate, dimethyl carbonate, and ethyl
methyl carbonate (all from Grant Chemicals) were dried over 4-Å molecu-
lar sieves before being used. Lithium foil (20-mil thick (Cypress-Foote
Mineral Company)) packed over argon was opened in an argon-filled dry
box (Vacuum Atmosphere Company) with a moisture content of less than
0.5 ppm.

We used a three-electrode system for all measurements. The reference and
counter electrodes were both made by pressing lithium foil on a nickel
screen. The working electrode consisted of a 1-mm-diam. aluminum wire
that was heat-sealed in shrinkable Teflon® tubing. All potentials are
referred to versus a lithium reference electrode.

We performed the controlled potential coulometry experiments with an
EG&G Instruments, Inc., PAR (Princeton Applied Research), potentiostat/
galvanostat (model 273). All experiments were computer-controlled using
the EG&G PAR electrochemical analysis software (model 270). All experi-
ments were performed inside a dry box.
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3. Results and Discussion
We investigated the stability of aluminum in several LiPF6 solutions in
binary- and ternary-solvent mixtures of EC, DMC, and EMC. A number of
these solutions had freezing points below ~–50 oC and thus were good
candidates as electrolytes for low-temperature applications of lithium-ion
cells. Table 1 shows the freezing points that we found for the various
mixtures. The prefix numbers with each solvent mixture indicate the ratio
of solvents by volume in each mixture, respectively. The aluminum
electrode exhibited an initial potential of ~1.8 V versus the lithium refer-
ence electrode in these solutions, but increased to ~2.8 V and resulted in
the formation of a surface film on the aluminum wire electrode. This film
protects the aluminum substrates in lithium-ion batteries from further
corrosion. The nature of the film on aluminum metal in these solutions
has not been investigated but probably consists of aluminum fluoride or a
species that contains fluoride.

Solvent mixture ratio (vol %) Temperature (ºC)

1:3 EC-EMC –65
1:4 EC-EMC –75
1:1:1 EC-DC-EMC –50
1:1:2 EC-DMC-EMC –65
2:2:1 EC-EMC-DMC –50
1:1:3 EC-DMC-EMC –65

Table 1. Freezing
points of 1.0-mol/L
solutions of LiPF6 in
various solvent
mixtures.

This study attempted to determine if the initial film formed on aluminum
in these solutions was stable at the high positive potentials encountered
during the charging of lithium-ion cells. We investigated the stability of
aluminum at higher potentials by using the technique of controlled
potential coulometry. The potential of the aluminum wire electrode
dipped in the electrolyte was stepped up to a more positive value for
300 s, and the current response was plotted as a function of time. Typical
plots obtained at potentials of 3.5 to 5.0 V in a 1.0-mol/L LiPF6 solution in
a binary 1:3 EC-EMC and a ternary 1:1:1 EC-DMC-EMC solvent mixture
are presented in figures 1 and 2, respectively. Similar current density/
time plots were obtained for aluminum electrodes in LiPF6 solutions in
other binary and ternary mixtures of EC, DMC, and EMC.

Figures 1 and 2 show that at each applied potential between 3.5 and 4.5 V,
the current recorded at the aluminum electrodes quickly falls to a small
steady-state value and shows no subsequent increase. Thus, the initial
surface film formed on aluminum electrodes in LiPF6 solutions appears to
be quite stable and does not break down at potentials up to 4.5 V. At
higher potentials, the current showed a slight increase after about 2 s.
Since the LiPF6 solutions in mixtures of EC, DMC, and EMC are known to
undergo electrochemical oxidation [3] at potentials above ~4.5 V, the
slight increase in current in the current density/time plots at 4.75 and
5.0 V may be regarded as due to the solvent oxidation. However, even at
4.75 V and 5.0 V, the steady-state currents were only slightly higher than
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the steady-state currents at lower potentials. This indicates that the
original protective film remains intact even at potentials above 4.5 V.

Recently, lithium methide solutions have been proposed [4–6] as ther-
mally stable and highly conducting electrolytes for lithium-ion batteries.
Therefore, we have also investigated the stability of aluminum in lithium
methide solutions in several binary- and ternary-solvent mixtures of EC,
DMC, and EMC. Typical current density/time plots obtained at alumi-
num electrodes at various potentials in 1.0-mol/L lithium methide solu-
tions in a binary 1:3 EC-EMC and a ternary 1:1:1 EC-DMC-EMC solvent
mixture are presented in figures 3 and 4, respectively. Similar plots were
obtained in lithium methide solutions in other binary- and ternary-
solvent mixtures of EC, DMC, and EMC.

The current density/time plots obtained at aluminum electrodes in
lithium methide solutions were similar to those obtained in LiPF6 solu-
tions up to a potential of ~4.25 V only. At higher potentials, the current
decreases initially but then begins to increase after ~100 ms. Also, the
magnitude of the currents at potentials above ~4.25 V was much greater
than that observed in LiPF6 solutions. Therefore, it appears that the
protective surface film initially formed on aluminum in lithium methide
solutions breaks down at potentials above ~4.25 V. This results in high
anodic currents due to the corrosion of the aluminum electrodes as well
as the oxidation of solvents.

To compare the stability of aluminum in LiPF6 and lithium methide
solutions, we obtained the currents at various applied potentials from the
current density/time presented in figures 1 through 4 at time t = 200 s
and plotted in figure 5 as a function of the applied potential.

We see that the magnitude of the currents obtained at aluminum elec-
trodes in LiPF6 and lithium methide solutions is similar at potentials of
up to ~4.25 V. At higher potentials, the currents in lithium methide solu-
tions were much greater than those obtained in LiPF6 solutions. There-
fore, as shown before, it appears that in contrast to LiPF6 solutions, the
protective surface films formed on aluminum electrodes in lithium
methide solutions are not stable at potentials above ~4.25 V.



5

Figure 1. Current
density/time plots
obtained at
aluminum electrode
at various potentials
in 1.0-mol/L LiPF6
solution in 1:3 EC-
EMC.
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Figure 2. Current
density/time plots
obtained at
aluminum electrode
at various potentials
in 1.0-mol/L LiPF6
solution in 1:1:1 EC-
DMC-EMC.
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Figure 3. Current
density/time plots
obtained at
aluminum electrode
at various potentials
in 1.0-mol/L lithium
methide solution in
1:3 EC-EMC.
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Figure 4. Current
density/time plots
obtained at
aluminum electrode
at various potentials
in 1.0-mol/L lithium
methide solution in
1:1:1 EC-DMC-EMC.
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Figure 5. Current
density vs applied
potential plots at
aluminum electrode
in 1.0-mol LiPF6 and
lithium methide
solutions in 1:3 EC-
EMC (j,d) and 1:1:1
EC-DMC-EMC (m,r).
Current densities
were taken from
current density/time
plots presented in
figures 1 through 4 at
t = 200 s.
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4. Conclusions
Controlled potential coulometric experiments showed that the protective
surface film formed on aluminum electrodes in lithium methide solutions
in binary- and ternary-solvent mixtures of EC, DMC, and EMC breaks
down at potentials above ~4.25 V, and this results in increased corrosion
at higher potentials. In contrast to lithium methide solutions, the protec-
tive surface film formed on aluminum electrodes in LiPF6 solutions was
found to be quite stable and did not break down at potentials up to ~5 V.
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